228 research outputs found

    Hyper Partial Order Logic

    Get PDF
    We define HyPOL, a local hyper logic for partial order models, expressing properties of sets of runs. These properties depict shapes of causal dependencies in sets of partially ordered executions, with similarity relations defined as isomorphisms of past observations. Unsurprisingly, since comparison of projections are included, satisfiability of this logic is undecidable. We then address model checking of HyPOL and show that, already for safe Petri nets, the problem is undecidable. Fortunately, sensible restrictions of observations and nets allow us to bring back model checking of HyPOL to a decidable problem, namely model checking of MSO on graphs of bounded treewidth

    Blocking a transition in a Free Choice net and what it tells about its throughput

    Get PDF
    International audienceIn a live and bounded Free Choice Petri net, pick a non-conflicting transition. Then there exists a unique reachable marking in which no transition is enabled except the selected one. For a routed live and bounded Free Choice net, this property is true for any transition of the net. Consider now a live and bounded stochastic routed Free Choice net, and assume that the routings and the firing times are independent and identically distributed. Using the above results, we prove the existence of asymptotic firing throughputs for all transitions in the net. Furthermore the vector of the throughputs at the different transitions is explicitly computable up to a multiplicative constant

    Distributed Semi-Markov Processes in Stochastic T-Timed Petri Nets

    Get PDF
    The heaps of pieces modelling approach (see Gaubert/Mairesse, PNPM'99) admits a (max,+)-linear model for the time consumption, under earliest firing and a given trace, of safe T-timed nets. The present paper shows that this type of model can be extended, using an appropriate partial order semantics under cluster view, to include stochastic choice and timing; we give the algorithmic construction of that semantics and obtain a semi-Markov property in multi-dimensional real time

    Cyclic Ordering through Partial Orders *

    Get PDF
    International audienceThe orientation problem for ternary cyclic order relations has been attacked in the literature from combinatorial perspectives, through rotations , and by connection with Petri nets. We propose here a twofold characterization of orientable cyclic orders in terms of symmetries of partial orders as well as in terms of separating sets (cuts). The results are inspired by properties of non-sequential discrete processeses, but also apply to dense structures of any cardinality

    An Algebraic View of Space/Belief and Extrusion/Utterance for Concurrency/Epistemic Logic

    Get PDF
    International audienceWe enrich spatial constraint systems with operators to specify information and processes moving from a space to another. We shall refer to these news structures as spatial constraint systems with extrusion. We shall investigate the properties of this new family of constraint systems and illustrate their applications. From a computational point of view the new operators provide for pro-cess/information extrusion, a central concept in formalisms for mobile communication. From an epistemic point of view extrusion corresponds to a notion we shall call utterance; a piece of information that an agent communicates to others but that may be inconsistent with the agent's beliefs. Utterances can then be used to express instances of epistemic notions, which are common place in social media, such as hoaxes or intentional lies. Spatial constraint systems with extrusion can be seen as complete Heyting algebras equipped with maps to account for spatial and epistemic specification

    Monotony in Service Orchestrations

    Get PDF
    Web Service orchestrations are compositions of different Web Services to form a new service. The services called during the orchestration guarantee a given performance to the orchestrater, usually in the form of contracts. These contracts can be used by the orchestrater to deduce the contract it can offer to its own clients, by performing contract composition. An implicit assumption in contract based QoS management is: "the better the component services perform, the better the orchestration's performance will be". Thus, contract based QoS management for Web services orchestrations implicitly assumes monotony. In some orchestrations, however, monotony can be violated, i.e., the performance of the orchestration improves when the performance of a component service degrades. This is highly undesirable since it can render the process of contract composition inconsistent. In this paper we define monotony for orchestrations modelled by Colored Occurrence Nets (CO-nets) and we characterize the classes of monotonic orchestrations. We show that few orchestrations are indeed monotonic, mostly since latency can be traded for quality of data. We also propose a sound refinement of monotony, called conditional monotony, which forbids this kind of cheating and show that conditional monotony is widely satisfied by orchestrations. This finding leads to reconsidering the way SLAs should be formulated

    A Passenger-centric Multi-agent System Model for Multimodal Public Transportation

    Get PDF
    If we want to understand how perturbations spread across a multi-modal public transportation system, we have to include passenger flows into the model and the analysis. Indeed, in general no two different lines in such a system are physically connected directly, or share tracks or other resources. Rather, they are connected by passengers changing lines and thus transmit perturbations from one line or mode to another. We present a formal passenger-centric multi-agent system model that can capture (i) individual and possibly multi-modal trip profiles with branches resulting from different decision outcomes, (ii) the movement of fixed-route operated transportation means, and (iii) in-vehicle and in-station capacity constraints. The model is based on a nets-within-nets approach with Petri nets as the basic building entities. Thus, it has a convenient graphical representation, and the possibility of execution

    Forecasting Passenger Loads in Transportation Networks

    Get PDF
    This work is part of an ongoing effort to understand the dynamics of passenger loads in modern, multimodal transportation networks (TNs) and to mitigate the impact of perturbations. The challenge is that the percentage of passengers at any given point of the TN that have a certain destination, i.e. their distribution over different trip profiles, is unknown. We introduce a stochastic hybrid automaton model for multimodal TNs that allows to compute how such probabilistic load vectors are propagated through the TN, and develop a computation strategy for forecasting the network's load a certain time into the future

    Belief, Knowledge, Lies and Other Utterances in an Algebra for Space and Extrusion

    Get PDF
    International audienceThe notion of constraint system (cs) is central to declarative formalisms from concurrency theory such as process calculi for concurrent constraint programming (ccp). Constraint systems are often represented as lattices: their elements, called constraints, represent partial information and their order corresponds to entailment. Recently a notion of n-agent spatial cs was introduced to represent information in concurrent constraint programs for spatially distributed multi-agent systems. From a computational point of view a spatial constraint system can be used to specify partial information holding in a given agent's space (local information). From an epistemic point of view a spatial cs can be used to specify information that a given agent considers true (beliefs). Spatial constraint systems, however, do not provide a mechanism for specifying the mobility of information/processes from one space to another. Information mobility is a fundamental aspect of concurrent systems. In this article we develop the theory of spatial constraint systems with operators to specify information and processes moving from a space to another. We shall investigate the properties of this new family of constraint systems and illustrate their applications. From a computational point of view the new operators provide for process/information extrusion, a central concept in formalisms for mobile communication. From an epistemic point of view extrusion corresponds I to a notion we shall call utterance; a piece of information that an agent communicate to others but that may be inconsistent with the agent's beliefs. Utterances can then be used to express instances of epistemic notions such as hoaxes or intentional lies which are common place in social media. Spatial constraint system can express the epistemic notion of belief by means of space functions that specify local information. We shall also show that spatial constraint can also express the epistemic notion of knowledge by means of a derived spatial operator that specifies global information
    • …
    corecore